波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

百家乐官网注码调整| 网络百家乐金海岸破解软件| 百家乐官网现金网信誉排名| 打百家乐的技术| 百家乐官网网娱乐城| 网上百家乐哪里开户| 百家乐官网龙虎玩| 皇冠网小说网址| 德州扑克2| 丰禾线上娱乐| 岚皋县| 百家乐高科技| 百家乐游戏机价格| 百家乐赌场筹码| 百家乐大赌城| 威尼斯人娱乐城 196| 伯爵百家乐娱乐| 新太阳城娱乐| 沙龙国际| 百家乐蓝盾有赢钱的吗| 曼哈顿百家乐的玩法技巧和规则| 至富百家乐的玩法技巧和规则 | 百家乐官网视频游戏帐号| 百家乐2号机器投注技巧| 澳门百家乐官网海星王娱乐城 | 威尼斯人娱乐城佣金| sp全讯网新2| 百乐门| 澳门百家乐官网皇冠网| 百家乐官网赌场怎么玩| 网上百家乐官网群的微博| 金百家乐博彩公司| 百家乐娱乐城博彩正网| YY百家乐的玩法技巧和规则 | 百家乐官网游戏程序下载| 柬埔寨百家乐官网的玩法技巧和规则 | 威尼斯人娱乐平台博彩投注平| 大发888卡| 博马百家乐官网娱乐城| 现场百家乐官网能赢吗| 电子百家乐打法|