波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
肯博百家乐官网现金网| 太阳城官方网| 王牌百家乐官网的玩法技巧和规则| 宝龙百家乐官网的玩法技巧和规则| 丽星百家乐的玩法技巧和规则| 百家乐最好投注| 百家乐官网最常见的路子| 瑞丰国际开户| 休闲百家乐的玩法技巧和规则 | 大发888官方 df888| 百家乐官网规则以及玩法| 浏阳市| 德州扑克牌型| 新2百家乐现金网百家乐现金网| 百家乐官网赢钱秘密| 金赞百家乐官网现金网| 通化大嘴棋牌官方下载| 星期8百家乐娱乐城| 威尼斯人娱乐城官网lm0| 澳门百家乐论谈| 励骏会百家乐官网的玩法技巧和规则 | 百家乐官网老是输| 娱乐城开户送| 沂源县| 大发888ber| 青岛棋牌室| 准格尔旗| 奔驰百家乐官网可信吗| 电脑百家乐的玩法技巧和规则| 百家乐官网椅子| 百家乐官网大小是什么| 广州百家乐官网牌具公司| 苹果百家乐官网的玩法技巧和规则 | 顶级赌场| 大发888游戏平台 官方| 真钱网络棋牌游戏| 百家乐官网gamble| 送58百家乐官网的玩法技巧和规则 | 皇冠网百家乐官网赢钱| 全讯网3344666| 盛世国际娱乐城|