波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

在线百家乐官网| 真人百家乐什么平台| 百家乐官网平注常赢法| 百家乐哪条下路好| 宝马会在线娱乐城| 网上百家乐哪里| 威尼斯人娱乐城官方| 百家乐官网千术道具| 百家乐什么方法容易赢| 百家乐娱乐开户| 一共33楼24楼风水怎么说| 德州扑克怎么玩| 真人百家乐官网蓝盾娱乐网| 百家乐赌博软件下载| 百家乐官网奥| 大发888娱乐场下载iypu rd| 百家乐官网大钱赢小钱| 渝中区| 大三元百家乐官网的玩法技巧和规则| 百家乐输钱的原因| 百家乐官网投注网出租| 免佣百家乐官网的玩法| 大发888送钱58元| 百家乐投注杀手| 真人百家乐官网ea平台| 百家乐博彩公| 八卦与24山| 百家乐官网娱乐网备用网址 | 水果机榨汁机| 狮威百家乐官网娱乐城| 百家乐官网八卦投注法| 大发888东方鸿运娱乐| 做生意摆放的招财物件| 网上百家乐官网打牌| 永利高百家乐官网开户| 365外围网| 大发888游戏平台hgdafa888gw| 金道百家乐游戏| 百家乐官网必赢法冯耘| 琼中| 大发888casino|