波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

大发888游戏平台hanpa| 小孟百家乐的玩法技巧和规则| 娱乐城注册送彩金100| 百家乐官网筹码真伪| 免费百家乐计划工具| 百家乐官网赌博分析网| 永利博网址| 百家乐游戏唯一官网网站| 休闲百家乐官网的玩法技巧和规则| 皇家娱乐城| 百家乐时时彩网站| 百家乐官网心得打法| 维多利亚娱乐城| 全讯网888| 做生意用的 风水上最好的尺寸有| 芷江| 大发888洗码| 百家乐大小桌布| 赢家百家乐官网的玩法技巧和规则| 九乐棋牌下载| 新锦江百家乐娱乐场| 加州百家乐官网的玩法技巧和规则 | 360棋牌游戏| 百家乐园云鼎娱乐网| 澳门百家乐职业赌客| 作弊百家乐赌具| 利高百家乐娱乐城| 百家乐官网龙虎的投注法| 真钱百家乐官网游戏排行| 德州扑克游戏网站| 威尼斯人娱乐城代理| 如何打百家乐的玩法技巧和规则| 百家乐官网路书| 阿克| 百家乐官网真人娱乐注册| 真人百家乐官网现金游戏| 利来娱乐开户| 淘金百家乐官网现金网| 皇冠网上69691| 威尼斯人娱乐城博彩投注平台| 大发888官网授权网 |