波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐赢钱好公式| 单张百家乐官网论坛| 星空棋牌舟山清墩| 霍林郭勒市| 大发888无数| 百家乐官网比赛技巧| 大家旺百家乐官网的玩法技巧和规则 | 小孟百家乐的玩法技巧和规则| 视频棋牌游戏| 百家乐官网技术秘籍| 免费百家乐官网奥| 百家乐龙虎桌布| 送彩金百家乐的玩法技巧和规则| bet365娱乐场| 电脑赌百家乐官网可靠吗| 百家乐真人博彩的玩法技巧和规则 | 百家乐详解| 百家乐官网这样赢保单分析| 百家乐谋略| 百家乐官网游戏出售| 百家乐投注法则| 大发888娱乐日博备用| 百家乐官网赌缆注码运用| 老虎百家乐的玩法技巧和规则| 百家乐官网好的平台| 十三张百家乐的玩法技巧和规则 | 百家乐娱乐城有几家| 澳门赌博| 正品百家乐官网地址| 大发888娱乐场下载 制度| 百家乐官网看炉子的方法| 全讯网sp| 百家乐游戏网址| 百家乐官网下注技巧| 高要市| 百家乐官网电脑赌博| 太阳城网上版| 真人百家乐官网最高赌注| 百家乐作弊内幕| 太阳城百家乐官网坡解| 威尼斯人娱乐城会员注册|